Structural and Functional Imaging Techniques: Common and State-of-Art Pulse Sequences at 3T

Allen W. Song Brain Imaging and Analysis Center

An Overview of the New 3T Scanner

- Short-bore magnet with active shield
- Twin-gradient system
 2.2 G/cm for high linearity body or large FOV scans
 4 G/cm gradient for high-slew rate fast imaging
- Parallel imaging infrastructure
 8-channel head coil upgradeable to 16 channels

Structural Imaging Techniques

- T1 Imaging
 3D Fast SPGR with Intensity Normalization
 SENSE: shorter acquisition time
 Non-SENSE: better SNR
- Proton Density and T2 Imaging 2D Fast Spin Echo with Intensity Normalization
- Diffusion Tensor Imaging
 Low distortion, high SNR with SENSE acquisition

Individual Coil Sensitivity of Our 3T

T1 Imaging

• Typical Imaging Parameters

3D Fast Spoiled Gradient Recalled acquisition Inversion-prepared (TI = 450 ms) TR 22 ms, TE 5.4 ms, flip angle 20° imaging matrix 2562, FOV 25.6 cm, slice thickness 1 mm Imaging time: 4 min

3D FSPGR with SENSE

3D FSPGR without SENSE

PD and T2 Imaging

 Typical Imaging Parameters 2D Fast Spin Echo (FSE), Dual echo times at 30 ms (PD) and 75 ms (T2) 1x1x1 mm isotropic resolution Imaging time: dual contrast – 9 min, T2 only – 5 min

Diffusion Tensor Imaging

With SENSE acquisition, DTI now sees low distortion, high SNR and large spatial coverage.

Typical Imaging Parameters: 128 x 128 single-shot EPI 15 non-collinear encoding directions b factor of 1000 s/mm² 8-channel SENSE acquisition 2 x 2 x 2 mm isotropic resolution under 5 min total imaging time

Region Based Fiber Tracking

Thalamocortical Projection (Tracking Between Regions)

Optic Radiations (Tracking Between Regions)

Functional Sequences on the 3T

- Developed in-house at BIAC, built upon the original spiral waveform from Stanford and EPI waveform from MCW
- Capable of high throughput, spiral in: 24 f/s (use < 20 f/s to reduce gradient heating); spiral out: 17 f/s; EPI: 17 f/s
- EPI has been modified to accommodate navigator echoes to remove ghosting artifacts from gradient imperfection and center frequency drift (mostly due to gradient heating at high throughput)

Eight-Channel EPI Imaging

Functional Sequence Summary

• Spiral-Out:

Pros: Capable of very short TE, used in arterial spin labeling technique for perfusion imaging. In addition, it has more room to accommodate diffusion gradients used in diffusion imaging Cons: Large signal dropout at the ventral brain regions, low internal contrast

• Spiral-In:

Pros: Better signal recovery at the ventral brain region, high throughput Cons: Blurry edges, low internal contrast

• EPI:

Pros: High internal contrast, clear edges. Cons: Spatial distortions at the ventral and frontal brain regions, along with some signal losses.